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Abstract

The QR matrix decomposition (QRD), or factorization, has many applications. In matrix

computations, it is used to solve linear equations and least squares problems. In signal

processing, it is used for adaptive filtering, adaptive beamforming/ interference nulling, and

direction finding. In communications, it is used for adaptive equalization and transceiver

design for multiple-input multiple-output (MIMO) channels.

When QRD is used in signal processing and communications, it is of interest to know the

effects of noise. This work is a first step towards that goal.

Given matrix A with full column-rank M, we consider the unique decomposition A = QR

where Q is a matrix with M orthonormal columns and R is an M ×M upper triangular

matrix with real positive diagonal elements r̂1, r̂2, . . . , r̂M. Treating r̂i as a function of the

elements of A, a simple expression is derived for its matrix gradient with respect to A.

Future work will aim to derive expressions for the gradients of all elements of Q and R,

and use these expressions to evaluate the effect of noise perturbation in A. The present

result is useful in optimizing certain MIMO decision-feedback communication systems.

Résumé

La décomposition QR (QRD) d’une matrice, ou sa factorisation, a plusieurs applications.

Dans les calculs matriciels, elle permet de résoudre des équations linéaires et des problèmes

des moindres carrés. Dans le traitement de signaux, elle sert au filtrage adaptatif, à la mise

en forme adaptative de faisceaux, à la suppression de brouillage et à la radiogoniométrie.

Dans les communications, elle sert à l’égalisation adaptative et à la conception d’émetteurs

récepteurs avec canaux MIMO (entrées multiples, sorties multiples).

Lorsque la décomposition QR est utilisée dans le traitement de signaux et les communica-

tions, il est important de connaı̂tre les effets du bruit. Les présents travaux constituent la

première étape vers la réalisation de cet objectif.

Soit une matrice A de rang-colonne complet M, nous considérons la décomposition unique

A = QR où Q est une matrice M à colonnes orthonormales et R est une matrice tri-

angulaire supérieure M ×M dont les éléments diagonaux sont des nombres réels positifs

r̂1, r̂2, . . . , r̂M. Considérant r̂i comme une fonction des éléments A, une expression simple

est dérivée de son gradient matriciel par rapport à A.

Les recherches futures auront comme objectif de dériver des expressions pour les gradients

des éléments de Q et de R, et d’utiliser ces expressions pour évaluer les effets de la pertur-

bation sur le bruit dans la matrice A. Les résultats de la présente étude seront utiles dans

l’optimisation de certains systèmes de communication à décision rétroactive MIMO.
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Executive summary

A simple expression for the matrix gradient of a

diagonal element of R in QR decomposition

A. Yasotharan; DRDC Ottawa TM 2010-247; Defence R&D Canada – Ottawa;

December 2010.

Background: In linear algebra, it is well known that any matrix A can be decomposed,

or factorized, as A = QR where Q is a matrix with orthonormal columns and R is an

upper triangular matrix. This so-called QR decomposition (QRD) has many applications.

In matrix computations, it is used to solve linear equations and least squares problems.

In signal processing, it is used for adaptive filtering, adaptive beamforming/ interference

nulling, and direction finding. In communications, it is used for adaptive equalization and

transceiver design for multiple-input multiple-output (MIMO) channels.

In signal processing and communications, it is of interest to know how noise perturbation

of A affects the elements of Q and R. This work is a first step towards that goal.

Principal results: In general the QRD is not unique. When A has full column-rank M,

uniqueness can be ensured by choosing the matrix Q to have M columns and constraining

the diagonal elements of R, say r̂1, r̂2, . . . , r̂M, to be positive. We consider this case.

Treating r̂i as a function of the elements of A, a simple expression is derived for its matrix

gradient with respect to A. Let A = X + jY be the real-imaginary decomposition of

A. Let qi and si be the ith columns of Q and S = R−1 respectively. It is shown that
∂

∂A
r̂i = ∂

∂X
r̂i + j ∂

∂Y
r̂i = r̂iqis

H
i , which is a rank-one matrix.

Matrix gradients of functions of {r̂i} of the form f (r̂i) and f (r̂1, r̂2, . . . , r̂M) are obtained.

Significance of results: When A is a signal-plus-noise matrix whose QRD is sought, it is

of interest to know how noise affects Q and R. Here, the gradients of elements of Q and

R with respect to A will be of value, as seen in stochastic perturbation theory. This work

constitutes a first step in that direction.

In MIMO decision-feedback communication system design, the QRD of the transmitter-

channel composite matrix yields the optimum receiver and its performance. Specifically,
{

r̂2
i

}

are the signal-to-noise ratios for the parallel data streams. Thus the derived expres-

sions for ∂

∂A
r̂i should be useful in jointly optimizing the transmitter and the receiver.
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Future work: Expressions must be derived for the gradients of all elements of Q and

R, as these expressions will be useful, according to the stochastic perturbation theory, in

evaluating the effects of noise in the QRD of a signal-plus-noise matrix.

It would be worthwhile to demonstrate that the derived expressions for ∂

∂A
r̂i are useful in

MIMO system design.
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Sommaire

A simple expression for the matrix gradient of a

diagonal element of R in QR decomposition

A. Yasotharan ; DRDC Ottawa TM 2010-247 ; R & D pour la défense Canada –

Ottawa ; décembre 2010.

Introduction : En algèbre linéaire, il est bien connu que n’importe quelle matrice A peut

être décomposée, ou factorisée, puisque A = QR où Q est une matrice à colonnes ortho-

normales et R est une matrice triangulaire supérieure. Cette décomposition QR (QRD) a

plusieurs applications. Dans les calculs matriciels, elle permet de résoudre des équations

linéaires et des problèmes des moindres carrés. Dans le traitement de signaux, elle sert au

filtrage adaptatif, à la mise en forme adaptative de faisceaux, à la suppression de brouillage

et à la radiogoniométrie. Dans les communications, elle sert à l’égalisation adaptative et à

la conception d’émetteurs récepteurs avec canaux MIMO (entrées multiples, sorties mul-

tiples).

Pour le traitement du signal et les communications, il est important de connaı̂tre les effets

de la perturbation sur le bruit de la matrice A sur les éléments de Q et R. Les présents

travaux constituent la première étape vers la réalisation de cet objectif.

Résultats : En général, la décomposition QR n’est pas unique. Lorsque A est à rang-

colonne complet M, on peut garantir l’unicité en donnant M colonnes à la matrice Q et

en contraignant les éléments diagonaux de R, disons r̂1, r̂2, . . . , r̂M, à être positifs. Nous

considérons ce cas.

En considérant r̂i comme une fonction des éléments de A, une expression simple est

dérivée de son gradient matriciel par rapport à A. Soit A = X + jY la décomposition

réel/imaginaire de A. Soit qi et si les ie colonnes de Q et S = R−1 respectivement. On a
∂

∂A
r̂i = ∂

∂X
r̂i + j ∂

∂Y
r̂i = r̂iqis

H
i , qui est une matrice de rang un.

Les gradients matriciels des fonctions de {r̂i} de la forme f (r̂i) et f (r̂1, r̂2, . . . , r̂M) sont

obtenus.

Portée : Lorsque l’on veut calculer la décomposition QR d’une matrice signal plus bruit

A, il est intéressant de connaı̂tre les effets du bruit sur Q et R. À cette fin, les gradients des

éléments Q et R par rapport à A seront importants, comme vu dans la théorie de la pertur-

bation stochastique. Les présents travaux constituent la première étape vers la réalisation

de cet objectif.
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Dans la conception d’un système de communication à décision rétroactive MIMO, La

décomposition QR de la matrice composite du canal émetteur donne un récepteur dont

le rendement est optimal. Plus précisément,
{

r̂2
i

}

sont les rapports signal-bruit des flux

de données parallèles. Les expressions dérivées pour ∂

∂A
r̂i devraient donc être utiles pour

optimiser conjointement l’émetteur et le récepteur.

Recherches futures : Des expressions doivent être dérivées pour les gradients des éléments

de Q et R, car ces expressions seront utiles, selon la théorie de perturbation stochastique,

pour évaluer les effets du bruit dans la décomposition QR d’une matrice signal plus bruit.

Il serait bon d’établir la preuve que les expressions dérivées pour ∂

∂A
r̂i sont utiles à la

conception d’un système MIMO.
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1 Introduction

In linear algebra, it is well known that any matrix A can be decomposed, or factorized,

as A = QR where Q is a matrix with orthonormal columns and R is an upper triangular

matrix. A formal statement of this result is given in Section 2. This so-called QR decom-

position has many applications in matrix computations - solving linear equations and linear

least squares fitting problems, to name a couple [1].

The QR decomposition also has many applications in signal processing and communica-

tions. The signal processing applications include adaptive filtering [2] (chapters 14,15),

adaptive beamforming [2] (chapter 14.5) [3] (chapter 7), and direction-finding [4]. The

adaptive beamforming methods that can be efficiently implemented via QR decomposi-

tion include LSE and MVDR/MPDR [3]. These methods are also applicable in interfer-

ence nulling, eg. GPS anti-jamming. The communications applications include adaptive

equalization [2] (chapter 15.9) and transceiver design for multiple-input multiple-output

(MIMO) communications [5] [6] [7].

In the above signal processing and communications applications, the QR decomposition

of a signal-plus-noise matrix is found. Therefore, it is of interest to know how the noise

affects the factors Q and R. If the noise variance is small enough, the effect of noise can

be studied via the Stochastic Perturbation Theory [8]. A brief overview of this theory is as

follows. Let A be a matrix and let F be a matrix-valued function of A with derivative F
′

A.

Given a perturbation matrix E, presumed small, we can write

F(A+E) ≈ F(A)+F
′

A(E). (1)

Suppose E is random and of the cross-correlated type defined in [8]. Then the difference

F(A+E)−F(A) ≈ F
′

A(E) (2)

can be estimated in a stochastic sense, provided we have a tractable expression for the

derivative F
′

A(E).

In the context of the QR decomposition A = QR, we want to study how the factors Q

and R are affected when A is perturbed by noise. The work reported herein constitutes

a first step towards that goal. Treating the diagonal elements {r̂i} of R as functions of

A, we obtain a simple generic expression for their gradients with respect to A; since we

are dealing with scalar-valued functions, gradient and derivative are the same. Future work

will aim to derive expressions for the gradients of all elements of Q and R. These gradients

may then be used to study how noise in matrix A affects it QRD.

The rest of the report is organized as follows:

Section 2 provides the needed mathematical preliminaries: a theorem on the QR decom-

position, the definition of the matrix gradient, and notations. It also states the scope of

DRDC Ottawa TM 2010-247 1



this report. Section 3 states a result concerning the orthogonal projection of a vector onto

the column-span of a matrix. This result is used in Section 4 to derive a simple generic

expression for the gradients of
{

r̂2
i

}

. The main result of the report - a simple expression

for the gradients of {r̂i} - is given in Section 4 along with other results. Section 5 outlines

an application of the result to MIMO communication system design. Section 6 summarizes

the results and suggests some lines of further work. Annexes A and B derive gradients that

are used in Section 3.

2 DRDC Ottawa TM 2010-247



2 Mathematical Preliminaries and Scope

2.1 QR Decomposition

We begin with a well known result in Linear Algebra. See [9] (Theorem 2.6.1) and [10]

(Section 5.2, especially, Section 5.2.6).

Theorem 1 (QR decomposition) Suppose A is a K ×M complex matrix with K ≥ M and

rank(A) = M. Then A can be factored as

A = Q R (3)

where Q is a K×M matrix with orthonormal columns, i.e., Q HQ = IM, the M×M identity

matrix, and R is an M×M upper triangular nonsingular matrix.

If we insist that the diagonal elements of R , say r̂1, r̂2, . . . , r̂M, are positive real, then Q and

R are unique. �

The above factorization of A is the so-called thin QR factorization defined in [10] (text

preceding Theorem 5.2.2 in page 230). Its uniqueness when R has positive diagonal el-

ements is asserted by Theorem 5.2.2 and Section 5.2.10 of [10]. In terms of this unique

factorization, any general QR decomposition will have the form A = Q̃ R̃ where Q̃ = Q P

and R̃ = P ∗R for some diagonal matrix P with diagonal elements of unit absolute value.

Here ∗ denotes complex conjugation.

Given a matrix, its QR decomposition can be computed by several methods, e.g. Gram-

Schmidt orthogonalization, Householder reflections, Givens rotations, etc [10] (Section

5.2). The method that is the most relevant to the present paper is the Gram-Schmidt or-

thogonalization. The properties of QR decomposition given in [10] (Theorem 5.2.1) are

also very useful.

2.2 Matrix gradient

Definition 1 (Matrix gradient) Let A be a complex-valued matrix and let A = X+ jY

be its real-imaginary decomposition. For a real-valued scalar function c of A, we denote

by ∂c
∂X

the matrix of partial derivatives of c with respect to the elements of X. Similarly, we

denote by ∂c
∂Y

the matrix of partial derivatives of c with respect to the elements of Y. Thus
∂c
∂X

and ∂c
∂Y

are real-valued matrices of the same size as A. We also denote

∂c

∂A
=

∂c

∂X
+ j

∂c

∂Y
. (4)

We call ∂c
∂X

the matrix gradient of c with respect to X, and similarly for ∂c
∂Y

. We call ∂c
∂A

the

matrix gradient of c with respect to A. �

DRDC Ottawa TM 2010-247 3



Note that when A is a vector, the matrix gradient reduces to the vector gradient.

We use the term ‘gradient’ to refer to both vector and matrix gradients, as the notation will

indicate which type of gradient is being referred to.

There are many books and papers that discuss the gradient of a real-valued scalar func-

tion of a vector or matrix variable. A well known paper is [11]. A well known book is

[12]. A more mathematical treatment is given in [13], the preface of which gives an exten-

sive bibliography on the theory and applications of matrix differential calculus. Appendix

A.7 of [3] and the appendix of Chapter 6 of [14] give gradients of some commonly en-

countered scalar functions of vectors and matrices. All of the above, except [3], consider

only real-valued scalar functions of real-valued vector or matrix variables. The gradient of

a real-valued scalar function of a complex-valued vector is discussed in [3] (A.7.4) with

acknowledgement to [15].

2.3 Notation

For a complex matrix A, we denote by ran(A) the range of A, ie. the vector subspace

spanned by the columns of A [10](Section 2.1.2). The orthogonal complement of ran(A)
is denoted by ran⊥(A).

2.4 Scope of Report

In the general context of the unique QR decomposition of Theorem 1 above, first we derive

a simple expression for ∂

∂A
r̂2

i . From this, we derive ∂

∂A
r̂i, and more generally, ∂

∂A
f (r̂i) for

any differentiable f (.). As an example of the latter, we derive ∂

∂A
log r̂i, from which we

derive ∂

∂A
logdet(R ) which is equivalent to 1

2
∂

∂A
logdet(AHA). We also treat the general

case ∂

∂A
f (r̂1, r̂2, . . . , r̂M) for f (.) that has all partial derivatives.

4 DRDC Ottawa TM 2010-247



3 Gradient of Squared Norm of Orthogonal

Projection

Let A be a K ×L (K ≥ L) matrix with rank L and let a be a K ×1 vector. In this section,

we will derive a result concerning the projection of a onto ran⊥(A). In the next section,

we will apply this result to the QR dcomposition of (3) by considering A to be the matrix

of the first L columns of A and a to be the (L+1)th column of A , for L = 1,2, . . . ,(M−1).

The orthogonal projection matrix P onto ran⊥(A) is

P = IK −A(AHA)−1AH (5)

which is Hermitian (PH = P) and idempotent (P2 = P). Denoting by r̂ the norm of the

orthogonal projection of a onto ran⊥(A), we have

r̂2 = ‖Pa‖2 (6)

= aHPHPa (7)

= aHPa. (8)

First we will derive the gradients of r̂2 with respect to a and A, as expressions involv-

ing a and A. Then we will simplify the expressions using the QR decomposition of the

augmented matrix [A,a].

We will use the term ‘gradient’ for vector and matrix gradients when the context is clear.

The gradient of r̂2 with respect to a is (see Annex A, Eq. (A.1))

∂

∂a
r̂2 = 2Pa. (9)

The gradient of r̂2 with respect to A is given by the following lemma whose statement

makes use of the pseudo-inverse of A given by

A# = (AHA)−1AH . (10)

Lemma 1

∂

∂A
r̂2 = −2

(

IK −A(AHA)−1AH
)

aaHA(AHA)−1 (11)

= −2(Pa)
(

A#a
)H

. (12)

DRDC Ottawa TM 2010-247 5



Proof: See Annex B for the proof of (11). Then use (5) and (10) to get (12). �

Note that when a ∈ ran(A), we have ∂

∂A
r̂2 = 0. To avoid this, we assume henceforth that

a /∈ ran(A). Then ∂

∂A
r̂2 is a rank-one matrix since (Pa) is a column vector and

(

A#a
)H

is

a row vector.

In order to simplify (9) and (12), suppose A and [A,a] have the QR decompositions

A = QR (13)

and

[A,a] = Q̃R̃. (14)

which are unique in the sense of Theorem 1.

Then Q̃ and R̃ can be partitioned as [10] (Theorem 5.2.1)

Q̃ = [Q,q] (15)

R̃ =

[

R r

0 r̂

]

(16)

where q is a K ×1 vector, r is a L×1 vector and r̂ is a real-valued scalar which is equal to

the norm of the projection of a onto ran⊥(A) defined in (6). The latter fact can be seen as

follows. Eqs. (14), (15), and (16) together show

a = Qr+qr̂ (17)

which is an orthogonal decomposition because

QHq = 0. (18)

Moreover, since Qr ∈ ran(A), we have

qr̂ = Pa (19)

which together with ‖q‖ = 1 shows that r̂ is the norm of the projection of a onto ran⊥(A).

Using (19), the gradient of (9) can be written simply as

∂

∂a
r̂2 = 2qr̂. (20)

To simplify (12), we need some extra algebra. Denote S = R−1. Then S is upper triangular

[10] (Section 3.1.8, The Algebra of Triangular Matrices). Moreover, R̃−1, which is also

upper triangular, can be partitioned as [9] (Section 0.7.3)

R̃−1 =

[

R r

0 r̂

]−1

=

[

S s

0 ŝ

]

(21)

6 DRDC Ottawa TM 2010-247



where s is a L×1 vector and ŝ is a scalar given by

R−1r = −r̂s (22)

r̂ŝ = 1. (23)

The following lemma gives a simple expression for the matrix gradient of (12).

Lemma 2
∂

∂A
r̂2 = 2r̂2qsH . (24)

Proof:

Using (13), the pseudo-inverse of (10) can be written as A# = R−1QH . Using this and

(17), we get

A#a = R−1QH(Qr+qr̂) (25)

= R−1r (26)

= −r̂s. (27)

where in the last step we have used (22). Using (27) and (19) in (12), we get (24). �

By combining (24) and (20), we obtain the following result.

Lemma 3
∂

∂[A,a]
r̂2 = 2r̂2q[sH , ŝ]. (28)

Proof: Using (23), (20) can be written as ∂

∂a
r̂2 = 2r̂2qŝ. Combine this with (24) �

Note that [sH , ŝ] is the Hermitian transpose of the last column of R̃−1 whose partitioned

form is given by (21).

DRDC Ottawa TM 2010-247 7



4 The Main Result

Referring to Theorem 1 and Eq. (3), we first introduce the notation needed for stating our

main result. Denote by qi the ith column of Q . Denote S = R −1 and denote by si the ith

column of S . Thus

Q = (q1,q2, . . . ,qM) (29)

R −1 = S = (s1,s2, . . . ,sM). (30)

Note that S is also upper triangular [10] (Section 3.1.8). Recall that {r̂i} are the diagonal

elements of R .

The following theorem is the main result of this paper.

Theorem 2 Referring to (3) and the above notations,

∂

∂A
r̂2

i = 2r̂2
i qis

H
i for i = 1,2, . . . ,M. (31)

�

The proof rests on the fact that QR decomposition can be done via Gram-Schmidt orthog-

onalization. Denote by ai the ith column of A of (3). Denote Ai = [a1,a2, . . . ,ai] for

i = 1,2, . . . ,M. Then a1 = q1r̂1 and, for i > 1, qir̂i is the orthogonal projection of ai onto

ran⊥(Ai−1). Evidently, r̂2
i does not depend on [ai+1,ai+2, . . . ,aM], and we have

∂

∂A
r̂2

i =

[

∂

∂Ai
r̂2

i , 0K×(M−i)

]

. (32)

Denote by {ŝi : i = 1,2, . . . ,M} the diagonal elements of S. Then (cf. (23))

ŝir̂i = 1 for i = 1,2, . . . ,M. (33)

The cases i = 1 and i > 1 are separately treated below.

Proof for Case i = 1

Observe that

r̂2
1 = aH

1 a1 (34)

a1 = q1r̂1. (35)
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Therefore,

∂

∂A1
r̂2

1 =
∂

∂a1
(aH

1 a1) (36)

= 2a1 (37)

= 2q1r̂1 (38)

= 2q1r̂2
1 ŝ1 (39)

where (37) follows from (A.1) of Annex A and in the last step we have used (33). Com-

bining this with (32), we get

∂

∂A
r̂2

1 = 2q1r̂2
1[ŝ1,01×(M−1)] (40)

= 2q1r̂2
1s

H
1 (41)

where in the last step we have used the fact that S of (30) is upper triangular. �

Proof for Case i > 1

Denote by Ri the leading i× i submatrix of R , the upper triangular matrix of (3). Define

the partition

Ri =

[

Ri−1 ri

0 r̂i

]

(42)

for i = 2,3, . . . ,M, where we identify R1 = r̂1. Denote by Si the leading i× i submatrix of

S , the upper triangular matrix of (30). Define the partition

Si =

[

Si−1 s̃i

0 ŝi

]

(43)

for i = 2,3, . . . ,M, where we identify S1 = ŝ1. Then SiRi = Ii for i = 1,2, . . . ,M (cf. (21)).

Denote Qi = [q1,q2, . . . ,qi] for i = 1,2, . . . ,M.

Since r̂i is the norm of the orthogonal projection of ai onto ran⊥(Ai−1), we invoke Lemma

3 of Section 3 by setting A = Ai−1, a = ai, Q = Qi−1, q = qi, R = Ri−1, r = ri, r̂ = r̂i,

S = Si−1, s = s̃i, ŝ = ŝi, to get

∂

∂Ai
r̂2

i =
∂

∂[Ai−1,ai]
r̂2

i (44)

= 2qir̂
2
i

[

s̃H
i , ŝi

]

. (45)

Observe that [s̃H
i , ŝi] is the ith row of SH

i . Combining this with (32), we get

∂

∂A
r̂2

i = 2qir̂
2
i

[

s̃H
i , ŝi,01×(M−i)

]

(46)

= 2qir̂
2
i s

H
i (47)
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where in the last step we have used the fact that S of (30) is upper triangular. �

The following corollary gives the gradient of r̂i. This result is the subject of the title of this

paper.

Corollary 1
∂

∂A
r̂i = r̂iqis

H
i . (48)

Proof: By the chain rule of differentiation,

∂

∂A
r̂i =

(

∂

∂(r̂2
i )

r̂i

)(

∂

∂A
r̂2

i

)

(49)

=

(

1

2r̂i

)

(

2r̂2
i qis

H
i

)

(50)

= r̂iqis
H
i . (51)

�

More generally, the gradient of any differentiable function of r̂i is given by the following

corollary.

Corollary 2 Let the real-valued function f (x) be differentiable in (0,∞) and let f ′(x) be

its derivative. Then
∂

∂A
f (r̂i) = f ′(r̂i)r̂iqis

H
i . (52)

�

As an example, we have
∂

∂A
log r̂i = qis

H
i . (53)

Weighted linear combinations over i = 1,2, . . . ,M can be taken of the above gradients. Let

{θi : i = 1,2, . . . ,M} be a set of weights, and denote the diagonal matrix

Θ = diag(θ1,θ2, . . . ,θM). (54)

Denote the diagonal matrix

R̂ = diag(r̂1, r̂2, . . . , r̂M) = diag(R ). (55)
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By taking weighted sums of (31), we get

∂

∂A

(

M
∑

i=1

θir̂
2
i

)

=
M

∑

i=1

2θir̂
2
i qis

H
i (56)

(57)

= 2Q ΘR̂2S H . (58)

Similarly, by taking weighted sums of (48), we get

∂

∂A

(

M
∑

i=1

θir̂i

)

= Q ΘR̂S H . (59)

By directly summing (53) over i = 1,2, . . . ,M, we get

∂

∂A
logdet(R ) =

∂

∂A
log

M
∏

i=1

r̂i (60)

=
∂

∂A

M
∑

i=1

log r̂i (61)

= Q S H . (62)

This can also be written as

∂

∂A
logdet(AHA) = 2Q S H (63)

since AHA = R HR and det(AHA) = det(R )2.

For a square (K = M) and nonsingular A, (62) reduces to

∂

∂A
log |det(A)| = A−H . (64)

More generally, let f (r̂1, r̂2, . . . , r̂M) be a real-valued function, and denote

F̂ = diag

(

∂ f

∂r̂1
,

∂ f

∂r̂2
, . . . ,

∂ f

∂r̂M

)

. (65)

Then, by the chain rule of differentiation,

∂

∂A
f (r̂1, r̂2, . . . , r̂M) =

M
∑

i=1

∂ f

∂r̂i

∂

∂A
r̂i (66)

=

M
∑

i=1

∂ f

∂r̂i

(

r̂iqis
H
i

)

(67)

= Q F̂R̂S H . (68)
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4.1 The Real Case

When the given matrix A of (3) is real, its unique QR decomposition A = Q R yields real

matrices Q and R . Therefore, the above expressions for gradients can be used with the

Hermitian transpose being interpreted as the normal transpose. Thus

∂

∂A
r̂i = r̂iqis

T
i . (69)
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5 Application to MIMO Communications

In multiple-input-multiple-output (MIMO) decision-feedback (DF) communication system

theory, the optimum receiver for a given transmitter and channel can be described easily via

the QR decomposition of the transmitter-channel composite matrix [6] [5] [7]. Moreover,

when the optimum receiver is used, the values
{

r̂2
i

}

represent the Signal-to-Noise Ratios

(SNRs) for the parallel data streams that are being communicated.

Problems of optimizing the transmitter-receiver pair of a MIMO DF system generally fall

into two categories:

1. maximize performance as measured by a function f (r̂1, r̂2, . . . , r̂M) subject to a con-

straint on the transmitter power

2. minimize the transmitter power subject to constraints on {r̂i} or functions thereof.

To derive first-order optimality conditions for these problems, we need an expression for

the matrix gradient of f (r̂1, r̂2, . . . , r̂M) or {r̂i} with respect to the elements of the transmitter

matrix. Such an expression can be obtained from (48) and the chain rule of differentiation;

note that (48) gives the gradient w.r.t. the transmitter-channel composite matrix.

In fact, an expression for the matrix gradient of a weighted sum of the SNRs was derived

in [7] (Appendix A) and used to optimize the transmitter and Zero-Forcing (ZF) receiver

of a MIMO DF system. That derivation directly deals with the QR decomposition of the

transmitter-channel composite matrix, and therefore is complicated. Moreover, it hides

the general results that would apply in other situations, eg. a MIMO DF system with a

Minimum Mean Square Error (MMSE) receiver. The derivations of the present report are

not only much simpler but also expose the general results. Using the results presented

herein, gradients of general performance measures, w.r.t. the transmitter matrix, can be

derived easily for both ZF and MMSE receivers.
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6 Conclusion

6.1 Summary

For a full-column-rank matrix A , we considered its unique QR decomposition A = Q R

such that Q HQ = I and R is square upper triangular with positive diagonal elements, say

r̂1, r̂2, . . . , r̂M.

Treating r̂i as a function of the elements of A , we derived a simple expression for the matrix

gradient of r̂2
i (Theorem 2). We then combined this with the chain rule of differentiation

to obtain simple expressions for the matrix gradients of r̂i (Corollary 1) and a general

differentiable real-valued function f (r̂i) (Corollary 2). As an example of the latter, we

derived the gradient of log r̂i (53). Using this we derived the gradient of logdet(AHA)
(63). By combining Corollary 1 with the chain rule, we also derived the gradient of a

general real-valued differentiable function f (r̂1, r̂2, . . . , r̂M) (68).

We noted how the main result of this report may be used to optimize the transmitter-receiver

pair of a MIMO DF communication system.

6.2 Suggestions for Future Work

Expressions must be derived for the gradients of all elements of Q and R , as these will

be useful in evaluating the effects of noise in A , according to the stochastic perturbation

theory.

It would be worthwhile to demonstrate the utility of the results of this report in optimizing

the transmitter-receiver pair of a MIMO DF communication system under various criteria.

14 DRDC Ottawa TM 2010-247



Annex A: Gradient of a Quadratic Form

For a complex-valued vector a and a Hermitian-symmetric matrix B, consider the real-

valued quadratic form aHBa. Here we derive the gradient

∂

∂a

(

aHBa
)

= 2Ba. (A.1)

Although this is a simple result, its derivation will be a good introduction to the somewhat

complicated derivations in Annex B. This result is used to get (9) and (37).

For any generic real-valued scalar variable α, which can be the real or imaginary part of

any element of a, we can write, by the product rule of differentiation,

∂

∂α

(

aHBa
)

=

(

∂aH

∂α

)

Ba+aHB

(

∂a

∂α

)

. (A.2)

Let a = x+ jy be the real-imaginary decomposition of a. Let xn be the nth element of x

and similarly for yn. For a general vector z, we denote by z|n the nth element of z.

We shall use the following facts below. For α = xn, ∂a

∂α
is a vector that has 1 at position n

and zeros elsewhere. Similarly, for α = yn, ∂a

∂α
is a vector that has j at position n and zeros

elsewhere.

Setting α = xn, we have by (A.2)

∂

∂xn

(

aHBa
)

= (Ba)|n + (Ba)|∗n (A.3)

= 2ℜ (Ba)|n . (A.4)

Letting α vary over x, we have

∂

∂x

(

aHBa
)

= 2ℜ(Ba) . (A.5)

Setting α = yn, we have by (A.2)

∂

∂yn

(

aHBa
)

= − j (Ba)|n + j (Ba)|∗n (A.6)

= 2ℑ (Ba)|n . (A.7)

Letting α vary over y, we have

∂

∂y

(

aHBa
)

= 2ℑ(Ba) . (A.8)

By combining (A.5) and (A.8) according to Definition 1 of Section 2, we get (A.1).
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Annex B: Proof of Lemma 1 of Section 3

This annex proves (11) of Lemma 1.

From (5) and (8), we have

r̂2 = aHa−aHA(AHA)−1AHa. (B.1)

The gradient, w.r.t. A, of the first term of (B.1) is zero. The gradient of the second term

of (B.1) can be obtained by the product rule of differentiation as follows. For any generic

real-valued scalar variable α, which can be the real or imaginary part of any element of A,

we can write
∂

∂α

(

aHA(AHA)−1AHa
)

= d1(α)+d2(α)+d3(α) (B.2)

where

d1(α) = aH

(

∂A

∂α

)

(AHA)−1AHa (B.3)

d2(α) = aHA

(

∂(AHA)−1

∂α

)

AHa (B.4)

d3(α) = aHA(AHA)−1

(

∂AH

∂α

)

a. (B.5)

Let A = X+ jY be the real-imaginary decomposition of A. In the following subsections,

we shall evaluate d1(α), d2(α), and d3(α) when α varies over X and Y. Towards this, we

denote

b = (AHA)−1AHa (B.6)

c = Ab. (B.7)

We shall use the following facts below. For α = xm,n, ∂A

∂α
is a matrix that has 1 at position

(m,n) and zeros elsewhere. Similarly, for α = ym,n, ∂A

∂α
is a matrix that has j at position

(m,n) and zeros elsewhere.

Notation

For a vector z, we denote by z|n the nth element of z.

For a matrix Z, we denote by Z|m,n the (m,n)th element of Z.
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d1 over X and Y

Using (B.6) in (B.3), we have

d1(α) = aH

(

∂A

∂α

)

b. (B.8)

Setting α = xm,n, we have

d1(xm,n) = a|∗m b|n (B.9)

= (abH)
∣

∣

∗

m,n
. (B.10)

Setting α = ym,n, we have

d1(ym,n) = j a|∗m b|n (B.11)

= j (abH)
∣

∣

∗

m,n
. (B.12)

d3 over X and Y

Using (B.6) in (B.5), we have

d3(α) = bH

(

∂AH

∂α

)

a. (B.13)

Setting α = xm,n, we have

d3(xm,n) = b|∗n a|m (B.14)

= (abH)
∣

∣

m,n
. (B.15)

Setting α = ym,n, we have

d3(ym,n) = − j b|∗n a|m (B.16)

= − j (abH)
∣

∣

m,n
. (B.17)

d1 +d3 over X and Y

Combining (B.10) and (B.15), we get

d1(xm,n)+d3(xm,n) = (abH)
∣

∣

∗

m,n
+ (abH)

∣

∣

m,n
(B.18)

= 2ℜ

(

(abH)
∣

∣

m,n

)

. (B.19)
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Combining (B.12) and (B.17), we get

d1(ym,n)+d3(ym,n) = j (abH)
∣

∣

∗

m,n
− j (abH)

∣

∣

m,n
(B.20)

= 2ℑ

(

(abH)
∣

∣

m,n

)

. (B.21)

Simplification of d2(α)

Suppose Z(α) is a non-singular matrix-valued function of the real-valued scalar α. Then,

by applying the product rule of differentiation to the identity

Z(α)Z−1(α) = I (B.22)

and rearranging the terms, we get the well known result

∂Z−1

∂α
= −Z−1(α)

(

∂Z

∂α

)

Z−1(α). (B.23)

Setting Z = (AHA), we get

∂(AHA)−1

∂α
= −(AHA)−1

(

∂(AHA)

∂α

)

(AHA)−1. (B.24)

By applying the product rule to the middle term, we get

∂(AHA)−1

∂α
= −(AHA)−1

[(

∂AH

∂α

)

A+AH

(

∂A

∂α

)]

(AHA)−1 (B.25)

Using the above in (B.4), we get

d2(α) = −aHA(AHA)−1

[(

∂AH

∂α

)

A+AH

(

∂A

∂α

)]

(AHA)−1AHa. (B.26)

Using (B.6) in the above, we get

d2(α) = −bH

[(

∂AH

∂α

)

A+AH

(

∂A

∂α

)]

b. (B.27)

Using (B.7) in the above, and changing sign, we get

−d2(α) = bH

(

∂AH

∂α

)

c+cH

(

∂A

∂α

)

b. (B.28)
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d2 over X and Y

Note that the first term of the right-hand side of (B.28) is similar to d3(α) of (B.13) and the

second term is similar to d1(α) of (B.8).

Setting α = xm,n, we have

−d2(xm,n) = (cbH)
∣

∣

m,n
+ (cbH)

∣

∣

∗

m,n
(B.29)

= 2ℜ

(

(cbH)
∣

∣

m,n

)

. (B.30)

Setting α = ym,n, we have

−d2(ym,n) = − j (cbH)
∣

∣

m,n
+ j (cbH)

∣

∣

∗

m,n
(B.31)

= 2ℑ

(

(cbH)
∣

∣

m,n

)

. (B.32)

d1 +d2 +d3 over X and Y

Combining (B.19) and (B.30), we get

d1(xm,n)+d2(xm,n)+d3(xm,n) = 2ℜ

(

(abH)
∣

∣

m,n

)

−2ℜ

(

(cbH)
∣

∣

m,n

)

(B.33)

= 2ℜ

(

(abH −cbH)
∣

∣

m,n

)

(B.34)

= 2ℜ

(

((a−c)bH)
∣

∣

m,n

)

. (B.35)

Combining (B.21) and (B.32), we get

d1(ym,n)+d2(ym,n)+d3(ym,n) = 2ℑ

(

(abH)
∣

∣

m,n

)

−2ℑ

(

(cbH)
∣

∣

m,n

)

(B.36)

= 2ℑ

(

(abH −cbH)
∣

∣

m,n

)

(B.37)

= 2ℑ

(

((a−c)bH)
∣

∣

m,n

)

. (B.38)

Gradient of Second Term of (B.1)

From (B.2) and (B.35), we get

∂

∂X

(

aHA(AHA)−1AHa
)

= 2ℜ
(

(a−c)bH
)

. (B.39)
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From (B.2) and (B.38), we get

∂

∂Y

(

aHA(AHA)−1AHa
)

= 2ℑ
(

(a−c)bH
)

. (B.40)

By combining the above, according to Definition 1 of Section 2, we write

∂

∂A

(

aHA(AHA)−1AHa
)

= 2(a−c)bH . (B.41)

Expansion of (a−c)bH

By using (B.7) and (B.6), we can expand (a−c)bH in terms of a and A as follows:

(a−c)bH = (a−Ab)bH (B.42)

= (a−A(AHA)−1AHa)bH (B.43)

= (IK −A(AHA)−1AH)abH (B.44)

= (IK −A(AHA)−1AH)aaHA(AHA)−1. (B.45)

Final Results

From (B.1), (B.41), and (B.45), we get

∂

∂A
r̂2 = −

∂

∂A

(

aHA(AHA)−1AHa
)

(B.46)

= −2(a−c)bH (B.47)

= −2
(

IK −A(AHA)−1AH
)

aaHA(AHA)−1 (B.48)

which is (11) of Lemma 1.
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